A multi-block clustering algorithm for high dimensional binarized sparse data

نویسندگان

چکیده

We introduce a multidimensional multiblock clustering (MDMBC) algorithm in this paper. MDMBC can generate overlapping clusters with similar values along of dimensions. The parsimonious binary vector representation lends itself to the application efficient meta-heuristic optimization algorithms. In paper, hill-climbing (HC) greedy search has been presented that be extended by several stochastic and population-based frameworks. benefits are demonstrated bi-clustering benchmark problem analysis Leiden higher education ranking system, which measures scientific performance 903 institutions four dimensions 20 indicators representing publication output collaboration different fields time periods.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model-based Co-clustering for High Dimensional Sparse Data

We propose a novel model based on the von Mises-Fisher (vMF) distribution for coclustering high dimensional sparse matrices. While existing vMF-based models are only suitable for clustering along one dimension, our model acts simultaneously on both dimensions of a data matrix. Thereby it has the advantage of exploiting the inherent duality between rows and columns. Setting our model under the m...

متن کامل

A Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data

The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...

متن کامل

A Fuzzy Subspace Algorithm for Clustering High Dimensional Data

In fuzzy clustering algorithms each object has a fuzzy membership associated with each cluster indicating the degree of association of the object to the cluster. Here we present a fuzzy subspace clustering algorithm, FSC, in which each dimension has a weight associated with each cluster indicating the degree of importance of the dimension to the cluster. Using fuzzy techniques for subspace clus...

متن کامل

Sparse Modeling for High - Dimensional Multi - Manifold Data Analysis

High-dimensional data are ubiquitous in many areas of science and engineering, such as machine learning, signal and image processing, computer vision, pattern recognition, bioinformatics, etc. Often, high-dimensional data are not distributed uniformly in the ambient space; instead they lie in or close to a union of low-dimensional manifolds. Recovering such low-dimensional structures in the dat...

متن کامل

Functional Clustering Algorithm for High-Dimensional Proteomics Data

Clustering proteomics data is a challenging problem for any traditional clustering algorithm. Usually, the number of samples is largely smaller than the number of protein peaks. The use of a clustering algorithm which does not take into consideration the number of features of variables (here the number of peaks) is needed. An innovative hierarchical clustering algorithm may be a good approach. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Expert Systems With Applications

سال: 2022

ISSN: ['1873-6793', '0957-4174']

DOI: https://doi.org/10.1016/j.eswa.2021.116219